8/8/2019 MNIST - CNN Image Recognition

CA2 Assignment Part Il - Applying Convolutional
Neural Network to MNIST Dataset 9
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Dataset and problem definition

The MNIST problem is the classic performance test of particular Convolutional Neural Networks (CNNs).The
dataset contains 70,000 images of handwritten single digits from 0 to 9. All images are labelled. 60,000 of
these images form the train set and 10,000 images form the test set. For this dataset, our task is a
classification problem: we want to classify handwritten digits against their true labels.

Our classification task is as follows:
a. Apply CNNs of different architectures to predict labels of different handwritten digits
c. [Personal goal] Try to achieve an excellent result (defined as less 1% error on Machine Learning Mastery)

A quick sense of the data and the labels can be obtained by loading some sample images below.
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In [1]:

from keras.datasets import mnist
import matplotlib.pyplot as plt
(X_train, y_train), (X_test, y_test) = mnist.load_data()
# plot 4 images as gray scale
for i in range (3,7):
plt.subplot(218 + i)
plt.imshow(X_train[i], cmap=plt.get_cmap('gray'))
plt.show()
print('label: %s' % (y_train[3:7]))

C:\Users\tanw\Anaconda2\envs\py35\1lib\site-packages\h5py\__init__.py:36: F
utureWarning: Conversion of the second argument of issubdtype from ~float"
to "np.floating ™ is deprecated. In future, it will be treated as "np.float
64 == np.dtype(float).type .

from ._conv import register_converters as _register_converters
Using TensorFlow backend.

0

10

label: [1 9 2 1]

Data Preparation

This segment is reproduced from Practical 8, as | will be using Keras and there is not much variation in the
method of preparation.

The first task in data preparation is to reshape the images so that it is suitable for input to a CNN. The
Conv2D layer, which we will use quite a lot, expects pixel values in the following format: [pixels][width]
[height]. | will thus be converting all images into numpy arrays, and X_train will be a master array of all
60,000 training images.

For MNIST, the images are grayscale, hence the pixel channel is 1. This causes some issues when we use
more advanced network architectures (as we will see later), since the later architectures are trained on
ImageNet, which is a bank of millions of colour images.
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In [2]:

import numpy

from keras.datasets import mnist

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Dropout

from keras.layers import Flatten

from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
from keras.utils import np_utils

from keras.utils import plot_model

from keras import backend as K

K.set_image_dim_ordering('th")
seed = 1 #setting seed for reproducibility
numpy.random. seed(seed)

# reshape to format required by Keras -- [samples][pixels][width][height]
(X_train, y_train), (X_test, y_test) = mnist.load_data()

X_train = X_train.reshape(X_train.shape[0], 1, 28, 28).astype('float32')
X_test = X_test.reshape(X_test.shape[0], 1, 28, 28).astype('float32')

# normalize inputs to a scale of 1 and one-hot encoding
X_train = X_train / 255

X_test = X_test / 255

y_train = np_utils.to_categorical(y_train)

y_test = np_utils.to_categorical(y_test)

num_classes = y_ test.shape[1]

Considerations for Model Selection: Picking up from where we
left off in Practical 8

| pick up from where we left off in Practical 8 -- the architecture named "A More Complex CNN Model" in
Page 10 to 12. In reproducing this model, | will not run it (as it is already part of the Practical), but | want to
examine its architecture
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In [3]:

#Model 1 - "A More Complex CNN Model"

modell = Sequential()

modell.add(Conv2D(30, (5, 5), input_shape=(1, 28, 28), activation='relu'))

modell.add(MaxPooling2D(pool_size=2))

modell.add(Conv2D(15, (3, 3), activation='relu'))

modell.add(MaxPooling2D(pool_size=2))

modell.add(Dropout(0.2))

modell.add(Flatten())

modell.add(Dense(128, activation='relu'))

modell.add(Dense(50, activation='relu'))

modell.add(Dense(num_classes, activation="softmax'))

# Compile model

modell.compile(loss="'categorical_crossentropy’,
optimizer="adam', metrics=['accuracy'])

modell.summary()

Layer (type) Output Shape Param #
com2d1 (Com20)  (None, 30, 24, 24) 780
max_pooling2d_1 (MaxPooling2 (None, 30, 12, 12) 0

conv2d_2 (Conv2D) (None, 15, 10, 19) 4065
max_pooling2d_2 (MaxPooling2 (None, 15, 5, 5) 0
dropout_1 (Dropout) (None, 15, 5, 5) 0
flatten_1 (Flatten) (None, 375) 0

dense_1 (Dense) (None, 128) 48128
dense_2 (Dense) (None, 590) 6450
dense_3 (Dense) (None, 10) 510

Total params: 59,933
Trainable params: 59,933
Non-trainable params: @
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While scouring the net for literature on the network selection segment, | realised that this looks like a
modified version of Yann Lecun's 1988 LeNet-5.

Tracking the history of LeNet-5 up to recent models such as ResNet, and how they performed at
competitions such as the ImageNet Large Scale Visual Recognition (ILSVRC) competition, | was able to
know what were the available models out there, their relative performance, as well as pros and cons (e.g.
accuracy, compute power required, etc.) | decided to investigate the following models:

1. LeNet 5: Since Practical 8's model was based off this, | want to see how the original architecture
drawn up by Yann Lecun in 1998 holds up against all the other models.

2. ZFNet: | felt ZFNet was worth exploring as it won the ILSVRC 2013 with a fairly simple stacked
layer architecture, modified from AlexNet. It achieved a top-5 error rate of 14.8% which is now
already half of the prior mentioned non-neural error rate.

3. VGG-16: Finally, | decided to explore VGGNet, especially the VGG-16 variant. Although GoogLeNet
won ILSVRC 2014, VGGNet came in as a close runner up. VGGNet is also featured extensively in
Jeremy Howard's FastAl course which | have tried my hand at learning. Running various models
(eg. up to VGG-19), | also surmised that the maximum depth which my compute power can take for
a reasonabile training time (about 45 minutes) is the VGG-16 variant.

VGG-16 is thus the "frontier" model which is tha maximum my compute power can take, in reasonable
boundaries of training time. | did not try other more "ground-breaking" models such as ResNet and
GoogleNet for the same reasons. All 3 architectures below are implemented ground-up by reading through
the respective papers, checking for online references of people who have done it, and making the necessary
adjustments (ZFNet and VGG were written for 3 channels and larger image input size, hence | had to scale it
down).
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Building a network from scratch: Modified LeNet-5
The LeNet-5 architecture has:

1. 2 sets of alternating convolutional and pooling layers. These are:
a. Convolutional layer with 6 filters. b. Pooling layer. Different implementations online use
different methods, but to keep things consistent with the other architecture, | use MaxPooling2D.
c. Convolutional layer with 16 filters. b. Pooling layer. MaxPooling2D was used as per 1d.

2. A flattening layer in preparation for fully connected layers later

3. Two fully-connected layers. The size of the layers, at 120 and 84, are kept in accordance with that of
the original paper.

4. Finally a softmax classifier with 10 classes.

The pictorial representation is as follows:

C3:f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

HGHE S2: f. maps C5: |
2 Clayer g
6@14x14 5 Feiayer OUTRUT

INPUT
32x32

| | FullmnAeclEnn | Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

The only difference for the Practical 8 model differs is that it has one dropout later after the two sets of
convolutional and pooling layer, as well as different sizes and feature maps for the convolutional and dense
layers. The model was trained for 1 epoch. Validation on the test set yielded an error of 4.71%.
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In [5]:

#Model 2 - Modified LeNet

model2 = Sequential()

#Conv Layer 1

model2.add(Conv2D(6, (5, 5), input_shape = (1, 28, 28), padding ='valid', activation =
‘relu'))

#Pooling Layer

model2.add(MaxPooling2D(pool_size = 2, strides = 2))
#Conv Layer 2

model2.add(Conv2D(16, (5, 5), activation = 'relu'))
#Pooling Layer 2

model2.add(MaxPooling2D(pool_size = 2, strides = 2))
model2.add(Flatten())

#Fully connected Llayer 1

model2.add(Dense(units = 120, activation = 'relu'))

#Fully connected layer 2

model2.add(Dense(units = 84, activation = 'relu'))

#Ooutput Layer

model2.add(Dense(units = 10, activation = 'softmax'))

model2.compile(optimizer = 'adam', loss = 'categorical_crossentropy', metrics = ['accur

acy'])
model2.summary ()

# Fit the model

model2.fit(X_train, y_train, validation_data=(X_test, y_test),
epochs=1, batch_size=200, verbose=True)

# Final evaluation of the model

scores = model2.evaluate(X_test, y_test, verbose=True)

print()

print("CNN Error: %.2f%%" % (100-scores[1]*100))
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Layer (type) Output Shape Param #
conv2d 5 (Conv2d)  (None, 6, 24, 24) 156
max_pooling2d_5 (MaxPooling2 (None, 6, 12, 12) 0

conv2d_6 (Conv2D) (None, 16, 8, 8) 2416
max_pooling2d 6 (MaxPooling2 (None, 16, 4, 4) 0
flatten_3 (Flatten) (None, 256) 0

dense_7 (Dense) (None, 120) 30840
dense_8 (Dense) (None, 84) 10164
dense_9 (Dense) (None, 10) 850

Total params: 44,426
Trainable params: 44,426
Non-trainable params: @

Train on 60000 samples, validate on 10000 samples

Epoch 1/1

60000/60000 [==============================] - 58s - loss: 0.4201 - acc:
0.8785 - val_loss: 0.1495 - val_acc: 0.9529

9984/10000 [============================>.] - ETA: Os

CNN Error: 4.71%
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Building a network from scratch: Modified ZFNet

ZFNet was slightly trickier as it was meant for RGB images with 3 channels, and with an image size of 224 by
224. This meant that it had to be scaled down in order for it to fit with the MNIST dataset.

The architecture of ZFNet, along with details of how | modified it, are as follows:

1. A series of convolutional and pooling layers
a. Convolutional layer with 96 filters. | changed the filter size significantly by taking a proportion
of the original image dimension (96/224) and multiplying it to the MNIST image dimension (28)to get
12 feature maps. Did not apply the stride factor of 2 for the convolution -- | tried it, but ran into the
issue of the out image dimension being too small for any further convolutions somewhere around
the 7th layer. Hence kept the default stride at 1.
b. Pooling layer. MaxPooling2D with stride of 2.
c. Convolutional layer with 256 filters. | changed the filter size to 32 as per 1a by applying
proportion.
d. Pooling layer. MaxPooling2D, but | adjusted the stride again as my input image dimensions were
a lot smaller. Used stride value of 1.
e. Convolutional layer with 384 filters. | changed the filter size to 48 as per 1a by applying

proportion.
f. Convolutional layer with 385 filters. | changed the filter size to 48 as per 1a by applying
proportion.
g. Convolutional layer with 256 filters. | changed the filter size to 32 as per 1a by applying
proportion.

2. A flattening layer in preparation for fully connected layers later

3. Two sets of alternating layers between fully connected and dropout.
a. Fully connected layer. | changed the size of the layer to 1024, as 4096 was for a 224x224
image.
b. Dropout layer. | changed the proportion of the dropout to 0.1 instead of 0.5 as per original
architecture, as there isn't a lot of information in 28x28 pixels and my architecture cannot afford to
lose too much information, or it will risk underfitting of the layer to 1024, as 4096 was for a 224x224
image.
c. Fully connected layer. Same, as per 3a.
d. Dropout layer. Same, as per 3b, but dropout value at 0.2 after some experimentation
e. Fully connected layer. Scaled down the size, in preparation for the softmax prediction layer

4. Finally a softmax classifier with 10 classes.

The pictorial representation is as follows:

image size 224 110 13 13 13 _ =
filter size 7 \l' 3 \L 3
1
1 384 1 384 256
e _! 56 N N N

stride 2 33 may 316 max c
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o[y}
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Layer 2 Layer 3 Layer 4 Layer 5 Layer6 Layer7 Qutput

Input Image

ZF Net Architecture

The model was trained for 1 epoch. Validation on the test set yielded an error of 4.03%.
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In [6]:

#Model 3 - Modified ZFNet

model3 = Sequential()

#Conv Layer 1

model3.add(Conv2D(12,(7,7), input_shape=(1, 28, 28), padding='valid', activation='relu’
, kernel_initializer='uniform'))

#Pooling Layer

model3.add(MaxPooling2D(pool_size=2,strides=2))

#Conv Layer 2

model3.add(Conv2D(32,(5,5), padding="valid',activation="relu', kernel_initializer='unif
orm'))

#Pooling Layer

model3.add(MaxPooling2D(pool_size=1,strides=1))
model3.add(Conv2D(48,(3,3),padding="valid',activation="relu', kernel_initializer="unifo
rm'))

#Conv Layer 3

model3.add(Conv2D(48,(2,2),padding="valid',,activation="relu', kernel_initializer='unifo
rm'))

#Conv Layer 4

model3.add(Conv2D(32,(2,2),padding="valid',,activation="relu', kernel_initializer='unifo
rm'))

#Pooling Layer

model3.add(MaxPooling2D(pool_size=1,strides=1))

model3.add(Flatten())

#Fully Connected Layer 1

model3.add(Dense(units = 1024,activation="relu'))

model3.add(Dropout(0.1))

#Fully Connected Layer 2

model3.add(Dense(units = 1024,activation="relu'))

model3.add(Dropout(0.2))

#Fully Connected Layer
model3.add(Dense(units
#Output Layer
model3.add(Dense(units = 10, activation='softmax'))
model3.compile(loss="'categorical_crossentropy',optimizer="adam',metrics=["'accuracy'])
model3. summary()

w

512,activation="relu"))

# Fit the model

model3.fit(X_train, y_train, validation_data=(X_test, y_test),
epochs=1, batch_size=200, verbose=True)

# Final evaluation of the model

scores = model3.evaluate(X_test, y test, verbose=True)

print()

print("CNN Error: %.2f%%" % (100-scores[1]*100))
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Layer (type) Output Shape Param #
conv2d 7 (Comv2d)  (Nome, 12, 22, 22) 60
max_pooling2d_7 (MaxPooling2 (None, 12, 11, 11) 0
conv2d_8 (Conv2D) (None, 32, 7, 7) 9632
max_pooling2d 8 (MaxPooling2 (None, 32, 7, 7) 0
conv2d_9 (Conv2D) (None, 48, 5, 5) 13872
conv2d_10 (Conv2D) (None, 48, 4, 4) 9264
conv2d_11 (Conv2D) (None, 32, 3, 3) 6176
max_pooling2d_9 (MaxPooling2 (None, 32, 3, 3) 0
flatten_4 (Flatten) (None, 288) 0
dense_10 (Dense) (None, 1024) 295936
dropout_2 (Dropout) (None, 1024) 0
dense_11 (Dense) (None, 1024) 1049600
dropout_3 (Dropout) (None, 1024) 0
dense_12 (Dense) (None, 512) 524800
dense_13 (Dense) (None, 10) 5130

Total params: 1,915,010
Trainable params: 1,915,010
Non-trainable params: ©

Train on 60000 samples, validate on 10000 samples

Epoch 1/1

6@@@0/6@@@@ [==============================] - 1385 - loss: 0.4699 - acc.:
0.8435 - val_loss: 0.1314 - val_acc: 0.9597

9984/1@@@@ [============================>_] - ETA: es

CNN Error: 4.093%
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Modified VGG-16

VGG-16 was the hardest to build because given the depth of the layers, | had repeatedly run into the issue of
the output dimension being too small to further run a convolution layer. VGGNet, like ZFNet, was also
originally written for dimension 224x224x3 images. | applied the same adjustments as | did to ZFNet to scale
down the architecture, by changing the number of filters, the filter sizes, as well as the strides and sizes of
the pooling layers.

The architecture of VGG16, along with details of how | modified it, are as follows:

1.

First set of convolutional and pooling layers

a. Convolutional layer with 64 filters. As per ZFNet, | took a proportion of the original image
dimension (64/224) and multiplied it to the MNIST image dimension to get 8 feature maps. Kept the
dimensions of the filter size as they seem reasonable at 3x3, and kept the stride

b. Convolutional layer with 64 filters. Modifications as per 1a.

c. Pooling layer. MaxPooling2D with stride of 2.

. Second set of convolutional and pooling layers

a. Convolutional layer with 128 filters. Similar transformation by applying proportion to the
number of filters, obtained 16 filters.

b. Convolutional layer with 128 filters. Modifications as per 2a.

c. Pooling layer. MaxPooling2D stride and size changed from 2 to 1, as the network is very deep,
and if | do not change at thi point, somewhere in the 4th set of convolutional and pooling layers the
dimensions will get too small.

. Third set of convolutional and pooling layers

a. Convolutional layer with 256 filters. Similar transformation by applying proportion to the
number of filters, obtained 32 filters.

b. Convolutional layer with 256 filters. Modifications as per 3a

c. Convolutional layer with 256 filters. Modifications as per 3a

b. Pooling layer. MaxPooling2D, but with stride and size value changed from 2 to 1

. Third set of convolutional and pooling layers

a. Convolutional layer with 512 filters. Similar transformation by applying proportion to the
number of filters, obtained 64 filters.

b. Convolutional layer with 512 filters. Modifications as per 4a

c. Convolutional layer with 512 filters. Modifications as per 4a

b. Pooling layer. MaxPooling2D, but with stride and size value changed from 2 to 1

. Third set of convolutional and pooling layers

a. Convolutional layer with 512 filters. Similar transformation by applying proportion to the
number of filters, obtained 64 filters.

b. Convolutional layer with 512 filters. Modifications as per 5a

c. Convolutional layer with 512 filters. Modifications as per 5a

b. Pooling layer. MaxPooling2D, but with stride and size value changed from 2 to 1

. A flattening layer in preparation for fully connected layers later
. A dropout layer to prevent overfitting. While many online implementations have setit at 0.5, | set it

at 0.2 due to the smaller size of MNIST images.

. A series of fully connected and dropout layers.

a. Fully connected layer of size 4096. | changed the size of the layer to 512 by proportion, as
4096 was for a 224x224 image.

b. Dropout layer. | changed the proportion of the dropout to 0.2 instead of 0.5 as per original
architecture.

c. Fully connected layer of size 4096. Same, as per 8a.

d. Dropout layer. Same, as per 8b
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e. Fully connected layer of size 1000. Scaled down the size to 125, in preparation for the softmax
prediction layer
f. Dropout layer. Same, as per 8b.

9. Finally a softmax classifier with 10 classes.

The pictorial representation is as follows:

224 % 224 % 3 224 x 224 % 64
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fully connected+ReL.l]

| softmax

The model was trained for 1 epoch. Validation on the test set yielded an error of 1.83%. This was the best
performance out of the 3 models investiated.
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In [7]:

# Model 4 - Modified VGG 16

#Convolution set 1 - originally 64 filters

modeld4 = Sequential()

model4.add(Conv2D(8, (3,3), input_shape = (1, 28, 28), activation="relu', padding='sam
e'))

model4.add(Conv2D(8, (3,3), activation='relu', padding='same'))
model4.add(MaxPooling2D(pool_size = 2, strides = 2))

#Convolution set 2 - originally 128 filters
model4.add(Conv2D(16, (3,3), activation='relu', padding='same'))
model4.add(Conv2D(16, (3,3), activation='relu', padding='same'))
model4.add(MaxPooling2D(pool_size = 1, strides = 1))

#Convolution set 3 - originally 256 filters
model4.add(Conv2D(32, (3,3), activation='relu', padding='same'))
model4.add(Conv2D(32, (3,3), activation='relu', padding='same'))
model4.add(Conv2D(32, (3,3), activation='relu', padding='same'))
model4.add(MaxPooling2D(pool_size = 1, strides = 1))

#Convolution set 4 - originally 512 filters
model4.add(Conv2D(64, (3,3), activation='relu', padding='same'))
model4.add(Conv2D(64, (3,3), activation='relu', padding='same'))
model4.add(Conv2D(64, (3,3), activation='relu', padding='same'))
model4.add(MaxPooling2D(pool_size = 1, strides = 1))

#Convolution set 5 - originally 512 filters
model4.add(Conv2D(64, (3,3), activation='relu', padding='same'))
model4.add(Conv2D(64, (3,3), activation='relu', padding='same'))
model4.add(Conv2D(64, (3,3), activation='relu', padding='same'))
model4.add(MaxPooling2D(pool_size = 1, strides = 1))

# Fully connected and dropout Layers
model4.add(Flatten())

model4.add(Dropout(0.2))

model4.add(Dense(units = 512, activation='relu'))
model4.add(Dropout(0.2))

model4.add(Dense(units = 512, activation='relu'))
model4.add(Dropout(0.2))

model4.add(Dense(units
model4.add(Dense(units

125, activation='relu'))
10, activation='softmax'))

model4.compile(loss="'categorical_crossentropy', optimizer = 'adam', metrics=['accuracy'

D

model4.summary()

# Fit the model

model4d.fit(X_train, y_train, validation_data=(X_test, y_test),
epochs=1, batch_size=200, verbose=True)

# Final evaluation of the model

scores = model4.evaluate(X_test, y_test, verbose=True)

print("CNN Error: %.2f%%" % (100-scores[1]*100))
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Layer (type) Output Shape Param #
convad 12 (Conv2D)  (None, 8, 28, 28) 8o
conv2d_13 (Conv2D) (None, 8, 28, 28) 584
max_pooling2d_10 (MaxPooling (None, 8, 14, 14) 0
conv2d_14 (Conv2D) (None, 16, 14, 14) 1168
conv2d_15 (Conv2D) (None, 16, 14, 14) 2320
max_pooling2d_11 (MaxPooling (None, 16, 14, 14) 0
conv2d_16 (Conv2D) (None, 32, 14, 14) 4640
conv2d_17 (Conv2D) (None, 32, 14, 14) 9248
conv2d_18 (Conv2D) (None, 32, 14, 14) 9248
max_pooling2d_12 (MaxPooling (None, 32, 14, 14) 0
conv2d_19 (Conv2D) (None, 64, 14, 14) 18496
conv2d_20 (Conv2D) (None, 64, 14, 14) 36928
conv2d_21 (Conv2D) (None, 64, 14, 14) 36928
max_pooling2d_13 (MaxPooling (None, 64, 14, 14) 0
conv2d_22 (Conv2D) (None, 64, 14, 14) 36928
conv2d_23 (Conv2D) (None, 64, 14, 14) 36928
conv2d_24 (Conv2D) (None, 64, 14, 14) 36928
max_pooling2d_14 (MaxPooling (None, 64, 14, 14) 0
flatten_5 (Flatten) (None, 12544) 0
dropout_4 (Dropout) (None, 12544) 0
dense_14 (Dense) (None, 512) 6423040
dropout_5 (Dropout) (None, 512) 0
dense_15 (Dense) (None, 512) 262656
dropout_6 (Dropout) (None, 512) 0
dense_16 (Dense) (None, 125) 64125
dense_17 (Dense) (None, 10) 1260

Total params: 6,981,505
Trainable params: 6,981,505
Non-trainable params: ©

Train on 60000 samples, validate on 10000 samples

Epoch 1/1
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6@@99/69966 [==============================] - 15@75 - loss: 0.3996 - acc:
0.8663 - val_loss: ©.0558 - val_acc: 0.9817
1@@00/1@@@@ [==============================] - 1225

CNN Error: 1.83%

Performance boosting: Data Augmentation

Data Augmentation

| wanted to see if it was still possible to improve on the best performing model (i.e. VGG-16). Hence | decided
to apply some tweaks. One of it is data augmentation, which | learnt about through this site:
https://machinelearningmastery.com/image-augmentation-deep-learning-keras/
(https://machinelearningmastery.com/image-augmentation-deep-learning-keras/). Essentially this involved
creating synthetic training samples by making slight transformations to the data without changing its integrity.
This could include whitening, rotation, flipping or other geometric changes, which would lead to very new
numpy arrays.

The machine essentially reads this as new training points, and we have now increased our training set.The
data augmenting transformation | applied here is to rotate each image by 20 degrees. This leads to 120,000
training samples.

Learning Rate

| also learnt about another performance boosting measure, i.e. how the learning rate parameter could affect
model performance, here: https://towardsdatascience.com/understanding-learning-rates-and-how-it-
improves-performance-in-deep-learning-d0d4059¢1¢10 (https://towardsdatascience.com/understanding-
learning-rates-and-how-it-improves-performance-in-deep-learning-d0d4059¢1¢10). Using a smaller learning
rate could lead to a better result as it ensures that the algorithm will not overshoot the minima when trying to
reduce the loss function. This was especially important, as | learnt after several iterations of the code below:
my model was hovering around a loss function of 0.08, and at times the loss function would increase with
time, then go back down again.

| dropped the learning rate to 1e-4.
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In [11]:

#Fitting the CNN model with performance boosting measures

#Data augmentation
X_trainl = X_train.reshape(-1,1,28,28)
X_testl = X_test.reshape(-1,1,28,28)

from keras.preprocessing.image import ImageDataGenerator

X_train2 = numpy.array(X_train, copy=True)

y_train2 = numpy.array(y_train, copy=True)

datagen = ImageDataGenerator(featurewise_center=True, featurewise_std_normalization=Tru
e,rotation_range=20)

datagen.fit(X_trainl)

# Concatenating the old data with the augmented data
augmented_x = numpy.concatenate((X_trainl, X_train2), axis=0)
augmented_y = numpy.concatenate((y_train, y_train2), axis=0)

#Setting the learning rate to a slower one

from keras import optimizers

adam = optimizers.Adam(lr=1e-4)

model4.compile(loss="'categorical_crossentropy', optimizer = adam, metrics=['accuracy'])

#Fitting the VGG-16 model to the augmented data, at a slower Learning rate
model4.fit(augmented_x,augmented_y, validation_data=(X_testl, y_test),
epochs=1, batch_size=200, verbose=True)

# Final evaluation of the model

scores = model4.evaluate(X_testl, y_test, verbose=True)
print()

print("CNN Error: %.2f%%" % (100-scores[1]*100))

Train on 120000 samples, validate on 10000 samples

Epoch 1/1

120000/120000 [==============================] - 2960s - 1oss: 0.0449 - ac
C: 0.9867 - val _loss: 0.0317 - val_acc: 0.9903

10000/10000 [==============================] - 1165

CNN Error: 0.97%

Applying the performance boosters above led to a 0.97% error rate -- this is around state-of-the-art
performance (as highlighted in Practical 8).

Evaluation - Confusion Matrix

We know the accuracies of the different models, but for a more granular measure of what was classified
correctly and what was not, we can plot a confusion matrix of the predicted labels against the true labels. SK-
learn already has a template for plotting confusion matrices for plotting multi-class predictions, so | will reuse
the code (provided here: https://scikit-
learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html (https:/scikit-
learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html)):
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In [13]:

#Confusion Matrix Template from SK-Learn Documentation

import itertools

import numpy as np

import matplotlib.pyplot as plt

%Zmatplotlib inline

from sklearn import svm, datasets

from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix

nnn

def

Plotting the confusion matrix shows us where the main errors take place. It seems that:

This function prints and plots the confusion matrix.

Normalization can be applied by setting “normalize=True’.

plot_confusion_matrix(cm, classes,
normalize=False,
title="Confusion matrix',
cmap=plt.cm.Blues):

plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)

plt.colorbar()

plt.rcParams["figure.figsize"] = [35,35]
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)

if normalize:

cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]

thresh = cm.max() / 2.

for i, j in itertools.product(range(cm.shape[@]), range(cm.shape[1])):

plt.text(j, i, cm[i, j],
horizontalalignment="center",

color="white" if cm[i, j] > thresh else "black")

plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')

a) Some 6s were predicted as Os
b) Some 4s were predicted as 9s
c) Many 3s were predicted as 5s, and vice versa

This could be due to ambiguities in the handwriting (e.g. the loop in 6 closing near to the top than in the
middle, and the slope in 4 being more rounded hence giving the model the impression that it was a 9).
Nevertheless, there was no single mis-classification that had more than 10 instances -- a definitely satisfying

performance, for a training of only 1-2 epochs!
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In [14]:

# Predict the values from the validation dataset

Y _pred = modeld.predict(X_testl)

# Convert predictions classes to one hot vectors
Y_pred_classes = np.argmax(Y_pred,axis = 1)

# Convert validation observations to one hot vectors
Y_true = np.argmax(y_test,axis = 1)

# Compute the confusion matrix

confusion_mtx = confusion_matrix(Y_true, Y_pred_classes)
# Plot the confusion matrix
plot_confusion_matrix(confusion_mtx, classes = range(190))
plt.show()

Confusion matrix
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Conclusion

In this notebook and exercise, | have investigated and built using the Keras API three different CNN models.
The VGG-16 architecture was able to achieve near state-of-the-art results after training on augmented data,
and with a slower learning rate. If this were to be continued, and with more compute power, | would be
interested to try building GoogLeNet or Resnet-50 as these are models that have outperformed even VGG in
different runs of ILSVRC.
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