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Dataset and problem definition
For this dataset, we want to find out the number of species of flowers, based on dimensions of their petals
and sepals. However, we must now assume that we don't know the number of clusters. We need to apply a
clustering algorithm to help us tease out the "natural structure" within the data. Our task therefore is to:  
 
a. Apply a clustering algorithm to predict labels of different classes  
b. Determine the best number of classes to assume  
c. [In a real life scenario] Apply these labels of k different classes to the business use case for decision
making  
d. [In this assignment] Check back against the ground truth to see how accurate has our prediction been.

Standard approach that has been used and two
visualisations
In practical 5, an example was provided on how k-means clustering is applied to determine the number of
possible clusters in the dataset. I am reproducing it here first, before adding on to the approach, by calling up
a 3D plot to visualise an additional dimension. I will also try out other clustering algorithms subsequently, and
finally compare their predictions against the ground truth (labels in the dataset).

In [1]:

#Importing the essential packages 
from sklearn.cluster import KMeans 
from sklearn.datasets import load_iris 
import matplotlib.pyplot as plt 
from mpl_toolkits.mplot3d import Axes3D 
import numpy as np 
%matplotlib inline 
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In [2]:

#Iris Dataset 
iris = load_iris() 
X = iris.data 
plt.scatter(X[:, 2], X[:, 3]) 

A quick inspection of the data will show us a very clear cluster at the bottom left of the screen. The large
group at the top right could contain multiple clusters or one cluster (although through background info, we
know that there are 2 clusters in that group, leading to 3 different classes across the dataset). Let us first
apply the k-means algorithm with that knowledge, before moving into the next part (where we assume that
we do not know k).

Out[2]:

<matplotlib.collections.PathCollection at 0x20262f64b70>
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In [3]:

#Plotting - a 2D visualisation showing 2 axes 
import matplotlib.pyplot as plt 

#Fit the k-means algorithm 
km = KMeans(n_clusters=3) 
km.fit(X) 
y_kmeans = km.predict(X) 

# scatter plot the petal length (column 2), petal width (column 3) 
fig = plt.figure(figsize=(10,5)) 
plt.scatter(X[:, 2], X[:, 3], c=y_kmeans, s=50, cmap='coolwarm') 
plt.xlabel('Petal Length') 
plt.ylabel('Petal Width') 

# show centroid centres as grey circle opacity 50% 
centers = km.cluster_centers_ 
plt.scatter(centers[:, 2], centers[:, 3], c='black', s=200, alpha=0.5) 

Because the canvas is 2D, we are able to only represent the data on 2 dimensions out of 4. If we want a
more nuanced visualisation, there are several ways we can do it. One is to apply PCA to reduce 4
dimensions to 2; the other, which I have tried out below, is to use Matplotlib's 3D axes to create a 3D canvas
space, so that I can capture the Euclidean spaces between 3 different features.

Out[3]:

<matplotlib.collections.PathCollection at 0x2026341cac8>
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In [4]:

#Plotting - a 3D visualisation showing 3 axes 

fig = plt.figure(1, figsize=(10,10)) 
ax = Axes3D(fig, rect=[0, 0, 0.95, 1], elev=35, azim=120) 
ax.scatter(X[:, 3], X[:, 0], X[:, 2], 
         c=y_kmeans.astype(np.float), edgecolor="k", s=50, cmap='coolwarm') 
ax.set_xlabel("Petal width") 
ax.set_ylabel("Sepal length") 
ax.set_zlabel("Petal length") 
plt.title("K Means", fontsize=14) 

Now that we have the Euclidean visualisation of the 3 possible clusters, we can call up the predictions based
on k-means clustering. This is shown below:

Out[4]:

Text(0.5,0.92,'K Means')



5/21/2019 Iris K-Means Clustering

file:///C:/Users/tanw/Desktop/Exploring the efficacy of clustering algorithms.html 5/14

In [5]:

print(y_kmeans) 

Going blind - assuming we don't have the label answers
In this unsupervised learning task however, we assme that we don't know how many clusters there are. This
will have to be organically "sensed" by running a clustering algorithm (or a set of different ones). We can
iteratively find out what is the optimal number of clusters through various metrics.

I will be trying four different algorithms, with my selection based on what I've read in the scikit-learn
documentation:

1. K-Means Clustering: This is our first general purpose clustering algorithm, works best on even
cluster size, and as long as the number of clusters is not too high.

2. Spectral Clustering: This is able to accomodate non-flat geometry of the points, hence it could be a
good additional algorithm to try out in addition to K-Means.

3. Agglomerative Clustering: This algorithm is not affected even if the dataset inherently has many
clusters, and can accomodate non-Euclidean distances. It is a hierarchical clustering algorithm.

4. DBSCAN: This algorithm does not need us to specify the number of clusters, and makes its own
label predictions based on density. It could be used as a good reference point to see if the other
algorithms' optimal number of clusters is way off.

K-Means Clustering: Determining the Optimal Number of Clusters
There are several metrics to determine the optimal number of clusters. I focus on 2 here:

1. Silhoutte score: a measure of how similar an object is to its own cluster (cohesion) compared to
other clusters (separation). The higher the score, the greater the degree of cohesion amongst the
clusters. This was covered in Practical 5. However, we saw that it was not very effective, due to the
overlap of 2 out of 3 clusters

2. Sum of squared errors: a measure of how internally coherent clusters are, by minimising the sum of
squares in relation to an assigned centroid. The lower the score, the lower the error and hence the
greater the degree of cohesion amongst the clusters. This measure was not covered in practical 5,
but is a very useful attribute of the K-Means algorithm, hence I decided to give it a try.

[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
2 2 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 2 0 0 0 0 2 0 0 0 0 
0 0 2 2 0 0 0 0 2 0 2 0 2 0 0 2 2 0 0 0 0 0 2 0 0 0 0 2 0 0 0 2 0 0 0 2 0 
0 2] 
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In [6]:

#Importing the silhoutte score function 
from sklearn.metrics import silhouette_score 
from sklearn.metrics import accuracy_score 
from sklearn.cluster import KMeans 

#Silhoutte scores for different clusters and visualisation 
sil = {} 
for n_cluster in range(2, 11): 
   kmeans = KMeans(n_clusters=n_cluster, max_iter=1000).fit(X) 
   label = kmeans.labels_ 
   sil[n_cluster] = silhouette_score(X, label, metric='euclidean') 
   print("For n_clusters={}, The Silhouette Coefficient is {}.".format( 
           n_cluster, sil[n_cluster])) 
plt.figure() 
plt.plot(list(sil.keys()), list(sil.values())) 
plt.xlabel("Number of cluster") 
plt.ylabel("Silhoutte score") 
plt.show() 
    
print() 

#Inertia/SSE for different clusters and visualisation 
sse = {} 
for k in range(1, 10): 
   kmeans = KMeans(n_clusters=k, max_iter=1000).fit(X) 
   sse[k] = kmeans.inertia_ # Inertia: Sum of distances of samples to their closest cl
uster center 
   print("For n_clusters={}, the sum of squared errors is {}.".format( 
           k, sse[k])) 
plt.figure() 
plt.plot(list(sse.keys()), list(sse.values())) 
plt.xlabel("Number of cluster") 
plt.ylabel("SSE") 
plt.show() 
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Silhoutte score showed that the optimal number of clusters was 2.  
Inertia/SSE showed that the "elbow" where the error reduction occurs is around 2 to 3 clusters.

For n_clusters=2, The Silhouette Coefficient is 0.681046169211746. 
For n_clusters=3, The Silhouette Coefficient is 0.5528190123564091. 
For n_clusters=4, The Silhouette Coefficient is 0.4980505049972866. 
For n_clusters=5, The Silhouette Coefficient is 0.4887488870931048. 
For n_clusters=6, The Silhouette Coefficient is 0.36295529183027064. 
For n_clusters=7, The Silhouette Coefficient is 0.348950840496828. 
For n_clusters=8, The Silhouette Coefficient is 0.3390450925992608. 
For n_clusters=9, The Silhouette Coefficient is 0.32352028503142977. 
For n_clusters=10, The Silhouette Coefficient is 0.3389256908245164. 

For n_clusters=1, the sum of squared errors is 681.3706. 
For n_clusters=2, the sum of squared errors is 152.34795176035792. 
For n_clusters=3, the sum of squared errors is 78.85144142614601. 
For n_clusters=4, the sum of squared errors is 57.25600931571815. 
For n_clusters=5, the sum of squared errors is 46.472230158730156. 
For n_clusters=6, the sum of squared errors is 39.03998724608725. 
For n_clusters=7, the sum of squared errors is 34.40900974025974. 
For n_clusters=8, the sum of squared errors is 30.33777154862682. 
For n_clusters=9, the sum of squared errors is 27.78726218956482. 
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Spectral Clustering and Agglomerative Clustering: Determining the Optimal
Number of Clusters
For these two algorithms, while we could use the Silhoutte score, we have already talked about the inherent
limitations above. It would be more valuable to try out another metric to assess the effectiveness of the
algorithm for different numbers of clusters.

I had initially wanted to try out inertia, but discovered that not all algorithms have that attribute, and also
based on the scikit learn documentation inertia may not be a good measurement of effectiveness for some
algorithms. Looking further within the documentation, I decided to try out the Calinski Harabaz score.

The Calinski-Harabaz score is given as the ratio of the between-clusters dispersion mean and the within-
cluster dispersion:

where BK is the between group dispersion matrix, WK is the within-cluster dispersion matrix, and N is the
number of data points. In essence, to give a quick intuition, this metric functions somewhat like ANOVA,
where there is a within-group and between-group mean, and when these means diverge sufficiently the null
hypothesis is rejected.

s(k) = ×
Tr( )Bk

Tr( )Wk

N − k

k − 1
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In [7]:

def warn(*args, **kwargs): 
   pass 
import warnings 
warnings.warn = warn 

from sklearn.cluster import SpectralClustering 
from sklearn.metrics import calinski_harabaz_score 

#Silhoutte scores for different clusters and visualisation 
chs = {} 
for n_cluster in range(2, 11): 
   spectral = SpectralClustering(n_clusters=n_cluster, affinity='nearest_neighbors').f
it(X) 
   label = spectral.labels_ 
   chs[n_cluster] = calinski_harabaz_score(X, label) 
   print("For n_clusters={}, The Calinski Harabaz score is {}.".format( 
           n_cluster, chs[n_cluster])) 
plt.figure() 
plt.plot(list(chs.keys()), list(chs.values())) 
plt.xlabel("Number of cluster") 
plt.ylabel("Calinski Harabaz score") 
plt.show() 

The highest Calinski Harabaz score occured when k = 3.

For n_clusters=2, The Calinski Harabaz score is 502.82156350235897. 
For n_clusters=3, The Calinski Harabaz score is 556.8795419179528. 
For n_clusters=4, The Calinski Harabaz score is 523.0982068284292. 
For n_clusters=5, The Calinski Harabaz score is 451.2219241858261. 
For n_clusters=6, The Calinski Harabaz score is 469.17746699794236. 
For n_clusters=7, The Calinski Harabaz score is 441.2962024124759. 
For n_clusters=8, The Calinski Harabaz score is 400.7565814970956. 
For n_clusters=9, The Calinski Harabaz score is 393.66440161422. 
For n_clusters=10, The Calinski Harabaz score is 373.777967917726. 
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In [8]:

from sklearn.cluster import AgglomerativeClustering 

chsam = {} 
for n_cluster in range(2, 11): 
   agglom = AgglomerativeClustering(n_clusters=n_cluster).fit(X) 
   label = agglom.labels_ 
   chsam[n_cluster] = calinski_harabaz_score(X, label) 
   print("For n_clusters={}, The Calinski Harabaz score is {}.".format( 
           n_cluster, chsam[n_cluster])) 
plt.figure() 
plt.plot(list(chsam.keys()), list(chsam.values())) 
plt.xlabel("Number of cluster") 
plt.ylabel("Calinski Harabaz score") 
plt.show() 

The highest Calinski Harabaz score occured when k = 3.

DBSCAN
For DBSCAN, there was no need to specify the number of clusters. It would automatically make its own label
predictions, and from there we can then find out what was the optimal number of clusters that the algorithm
had "sussed out"

For n_clusters=2, The Calinski Harabaz score is 502.82156350235897. 
For n_clusters=3, The Calinski Harabaz score is 558.0580408128307. 
For n_clusters=4, The Calinski Harabaz score is 515.0789062430442. 
For n_clusters=5, The Calinski Harabaz score is 488.4849040365162. 
For n_clusters=6, The Calinski Harabaz score is 464.94939152139295. 
For n_clusters=7, The Calinski Harabaz score is 431.9818198792292. 
For n_clusters=8, The Calinski Harabaz score is 416.18448738825094. 
For n_clusters=9, The Calinski Harabaz score is 388.6499175669273. 
For n_clusters=10, The Calinski Harabaz score is 366.8296134141234. 
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In [13]:

from sklearn.cluster import DBSCAN 
from sklearn.preprocessing import StandardScaler 

X1 = StandardScaler().fit_transform(X) 
db = DBSCAN() 
db.fit(X1) 
label = db.labels_ 
n_clusters_ = len(set(label)) - (1 if -1 in label else 0) 
print('Estimated number of clusters: %d' % n_clusters_) 

Checking back against the "answers"
Now that we have all the optimal number of clusters for each clustering algorithm, let's reinstantiate them,
and make predictions. Also, since we have the ground truth (the "answers" in the form of actual labels), we
can measure the effectivness of each algorithm.

The measure that I will use is the Adjusted Rand Index (ARI). I chose this measure because it ignores
permutations, hence the name of the labels (1 vs 2 or 0 vs 1) does not matter. Also, it is symmetric, as
swapping the argument does not change the score. This makes it useful since we are only interested in the
similarity of the assignments.

In [14]:

#Reinstantiating and fitting algorithms with their optimal k 

#K-Means Clustering 
km = KMeans(n_clusters=3).fit(X) 
kmlabel = km.labels_ 

#Spectral Clustering 
spectral = SpectralClustering(n_clusters=3, affinity='nearest_neighbors').fit(X) 
spectrallabel = spectral.labels_ 

#Agglomerative Clustering 
agglom = AgglomerativeClustering(n_clusters=3).fit(X) 
agglomlabel = agglom.labels_ 

#DBSCAN 
X1 = StandardScaler().fit_transform(X) 
db = DBSCAN() 
db.fit(X1) 
dblabel = db.labels_ 

Estimated number of clusters: 2 
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In [22]:

from sklearn import metrics 
ARIkm = metrics.adjusted_rand_score(iris.target, kmlabel) 
ARIspectral = metrics.adjusted_rand_score(iris.target, spectrallabel) 
ARIagglom = metrics.adjusted_rand_score(iris.target, agglomlabel) 
ARIdb = metrics.adjusted_rand_score(iris.target, dblabel) 

print("The ARI for K-Means Clustering is {}.".format(ARIkm)) 
print("The ARI for Spectral Clustering is {}.".format(ARIspectral)) 
print("The ARI for Agglomerative Clustering is {}.".format(ARIagglom)) 
print("The ARI for DBSCAN is {}.".format(ARIdb)) 

The ARI for K-Means Clustering is 0.7302382722834697. 
The ARI for Spectral Clustering is 0.7591987071071522. 
The ARI for Agglomerative Clustering is 0.7311985567707745. 
The ARI for DBSCAN is 0.44209866858859237. 
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The highest ARI was from Spectral Clustering, with k=3 at an ARI of 0.75. K-Means and Agglomerative come
close behind, at 0.73.

DBSCAN's ARI is the lowest at 0.44. This is because the natural number of clusters (2 clusters) sussed out
by the algorithm was already different from ground truth (3 clusters), hence confirming what we know from
background knowledge that the true value of k=3.

Summary - the value of the process
Going through this process of trying out various algorithms and evaluation metrics is useful because:

It helps us narrow down on the useful range of what the k-value could be. In a real-life business
case, where we do not know the optimal k, what we have established is a better sense of possible
values, rather than directly taking the Silhoutte score.
Going a step further, the process may help us to triangulate the best value of k. Even in this
example alone, after we have narrowed down k to two possible values of 2 and 3, intuition lends
itself more strongly towards 3, since out of 5 evaluation metrics, three of them point to k=3 (inertia
for K-means and Calinski-Harabaz for Spectral and Agglomerative), and two of them point to k=2
(Silhoutte for K-means and DBSCAN). There could even be a formalised voting system coded into a
script if we want to make this automatic.
In other datasets, the structure of the data may not best lend itself to a Euclidean mode of
clustering, or where the number of clusters is naturally very large and K-means clustering may not
be suitable. Some clusters could be naturally occurring in density too. Going through this process
may help us detect that -- if the predictions from different algorithms turn out to be extremely
different, then we know that one of these mechanisms would have kicked into effect, and we need
to be careful when selecting algorithms.

What we need to remember:

In finding the best algorithm and k-value, we cannot totally remove the element of trial and error --
since we don't have the answers for unsupervised learning. But having a good process of trying
different algorithms and metrics, as well as having a good sense of the data, will help us cut down
the range of that trial and error and let us arrive at the best solution more quickly
In StackOverflow, someone said to always seek the ground-truth manually if the business case is
too important for failure (one example I can think of clustering of medical ailments for treatment).
These unsupervised algorithms and evaluation metrics should always be used as a guide, and the
business user needs to know the room to maneuver in the absence of ground truth.
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